Integral operators
نویسنده
چکیده
1 Product measures Let (X,A , μ) be a σ-finite measure space. Then with A ⊗ A the product σalgebra and μ ⊗ μ the product measure on A ⊗A , (X ×X,A ⊗A , μ⊗ μ) is itself a σ-finite measure space. Write Fx(y) = F (x, y) and F (x) = F (x, y). For any measurable space (X ′,A ′), it is a fact that if F : X×X → X ′ is measurable then Fx is measurable for each x ∈ X and F y is measurable for each y ∈ X. Suppose that F ∈ L (X × X), F : X → C. Fubini’s theorem tells us the following. 3 There are sets N1, N2 ∈ A with μ(N1) = 0 and μ(N2) = 0 such that if x ∈ N c 1 then Fx ∈ L (X) and if y ∈ N c 2 then F y ∈ L (X). Define
منابع مشابه
Generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making
The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...
متن کاملSandwich-type theorems for a class of integral operators with special properties
In the present paper, we prove subordination, superordination and sandwich-type properties of a certain integral operators for univalent functions on open unit disc, moreover the special behavior of this class is investigated.
متن کاملSolving infinite system of nonlinear integral equations by using F-generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.
In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...
متن کاملA Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type
In this paper, we generalize the Meir-Keeler condensing operators via a concept of the class of operators $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems. As an application of this extension, we analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally, we p...
متن کاملThe approximate solutions of Fredholm integral equations on Cantor sets within local fractional operators
In this paper, we apply the local fractional Adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of Fredholm integral equations of the second kind within local fractional derivative operators. The iteration procedure is based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools ...
متن کاملSome concavity properties for general integral operators
Let $C_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{D}$. Each function $f in C_{0}(alpha)$ maps the unit disk $mathbb{D}$ onto the complement of an unbounded convex set. In this paper, we study the mapping properties of this class under integral operators.
متن کامل